The John–Nirenberg inequality with sharp constants Meilleures constantes dans l’inégalité de John–Nirenberg

نویسنده

  • Andrei K. Lerner
چکیده

Article history: Received 14 March 2013 Accepted after revision 3 July 2013 Available online 29 July 2013 Presented by Yves Meyer We consider the one-dimensional John–Nirenberg inequality: ∣∣{x ∈ I0: ∣∣ f (x)− f I0 ∣∣>α}∣∣ C1|I0|exp ( − C2 ‖ f ‖∗ α ) . A. Korenovskii found that the sharp C2 here is C2 = 2/e. It is shown in this paper that if C2 = 2/e, then the best possible C1 is C1 = 2 e4/e. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. r é s u m é On considère l’inégalité de John–Nirenberg unidimensionnelle : ∣∣{x ∈ I0: ∣∣ f (x)− f I0 ∣∣>α}∣∣ C1|I0|exp ( − C2 ‖ f ‖∗ α ) . A. Korenovskii a montré que la meilleure constante C2 était égale à 2/e. Dans cette Note, on montre que si C2 = 2/e, alors la meilleure constante possible pour C1 est C1 = 2 e4/e. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Results in the Integral-form John–nirenberg Inequality

We consider the strong form of the John-Nirenberg inequality for the L2-based BMO. We construct explicit Bellman functions for the inequality in the continuous and dyadic settings and obtain the sharp constant, as well as the precise bound on the inequality’s range of validity, both previously unknown. The results for the two cases are substantially different. The paper not only gives another i...

متن کامل

The John - Nirenberg type inequality for non - doubling measures

X. Tolsa defined the space of type BMO for a positive Radon measure satisfying some growth condition on R. This space is very suitable for the CalderónZygmund theory with non-doubling measures. Especially, the John-Nirenberg type inequality remains true. In this paper we introduce the localized and weighted version of this inequality and, as an application, we obtain some vector-valued inequali...

متن کامل

Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities

We consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpo...

متن کامل

General optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities.

We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transportation and convex analysis results. Explicit extremals and the computation of some optimal constants are also provided. In particular we extend the optimal Gagliardo-Nirenberg inequality proved by Del Pino and Dolbeault 2003 and the optimal inequalities proved by Cordero-Erausquin et al. 2004.

متن کامل

Best Constants for Gagliardo-nirenberg Inequalities and Applications to Nonlinear Diiusions ?

In this paper, we nd optimal constants of a special class of Gagliardo-Nirenberg type inequalities which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods) of the intermediate asymptotics of solutions to nonlinear diiusion equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013